
NASA Contractor Report 201604

ICASE Report No. 96-56

ICA
WORST CASE COMPLEXITY OF PARALLEL

TRIANGULAR MESH REFINEMENT BY LONGEST

EDGE BISECTION

Can Ozturan

NASA Contract No. NAS1-19480

December 1996

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001





Worst Case Complexity of Parallel Triangular Mesh

Refinement by Longest Edge Bisection

Can (_zturan*

Assistant Professor

Computer Engineering Department

Bogazici University

Istanbul, Turkey

Abstract

We present a logarithmic algorithm for performing parallel refinement of triangular

meshes by the widely used longest edge bisection procedure. We show that the

refinement propagation forms a data dependency which can be expressed as a forest of

directed trees. We solve a parallel Euler Tour problem on the trees to propagate the

refinement. After propagation, we apply refinement templates. Our algorithm improves

earlier reported results which had linear worst case complexity.

"This researchwas supported by the NationalAeronauticsand Space Administrationunder NASA

ContractNo. NAS1-19480 whilethe authorwas inresidenceatthe InstituteforComputer Applicationsin

Scienceand Engineering(ICASE), NASA LangleyResearchCenter,Hampton, VA. 23681-0001.





1 Introduction

Recently, adaptive mesh refinement (AMR) techniques for the solution of partial differential

equations have gained importance due to their ability to concentrate computational as well

as storage resources to regions where they are most needed, i.e. regions where the error in

the computed solution is not within a prescribed tolerance. AMR methods are driven by

automatic estimation and control of discretization errors and therefore need procedures to

refine regions with high errors. Since the mesh needs to be refined selectively, specialized

data structures and algorithms must be devised to refine and maintain the nonuniform

mesh.

In this paper, we address the problem of parallelizing adaptive refinement of two-

dimensional triangular meshes. A variety of techniques have been proposed to refine such

meshes sequentially [2][3][10][11]. The following three properties are highly desirable in a

refined mesh: (i) the resultant mesh should be con/orming, i.e., the intersection of any two

triangles should be either a single vertex, or an edge joining two vertices or the empty set,

(ii) the mesh gradation should be smooth, i.e., the areas of neighboring triangles should

not differ drastically, and finally (iii) the angles in the mesh should be neither too small

nor too large [1][5].

Rivara's refinement algorithm [10] which is based on bisecting the triangles by their

longest edge satisfies properties (i) and (ii). In relation to property (iii), it is proved that

the smallest angle in the (succesively) refined mesh is bounded by at worst one-half the

smallest angle in the original mesh.

Parallelization of mesh refinement procedures based on longest edge bisection have

been considered in [4][7][14][16]. The refinement procedures implemented by Jones and

Plassmann [7] use randomized graph coloring heuristics to resolve data structure update

conflicts. The data structures used in [4] and [14] do not necessitate the use of any

graph coloring heuristic to implement parallel mesh refinement. All these implementations,

however, have a worst case linear complexity due to possible propagation of refinement

to all other triangles in the mesh. A worst case example has been given by Jones and

Plassmann [7] and is shown in Figure 1.

FIG. 1. Example given by Jones and Plassmann showing linear worst case propagation o/

refinement.

In this paper, we present a logarithmic data parallel algorithm to refine triangular

meshes by Rivara's longest edge bisection procedure. We first present the problem

statement and then describe the algorithm. We also present an example illustrating the

steps of our algorithm and suggest data structures for possible practical implementation.



2 Problem Specification
Let T(V, E, F) denote a two-dimensional triangular mesh with V representing the set of

vertices,

Y = {(z_, yi) : zi,yi e _},

E, the set of edges,

E = {(vi,vj) :vi,vj E V},

and F, the set of triangular faces,

F = {(ei,ej,ek): ei,ej,ek E E}.

We define the length(ei) of an edge, ei E E, as its euclidean length and use the index i

to break the ties when multiple edges have same the euclidean length.

In this paper, we assume that the input data supplied by the user specifies V, E and

F. Some mesh generators may output the set of faces and express each face as a 3-tuple of

vertices. In the discussion and conclusion section, we suggest a possible way of converting

such a data set to the one assumed in this paper.

Rivara presents two algorithms for refining the mesh by longest edge bisection. These

are illustrated in Figure 2. In the first algorithm, a triangle marked for refinement (either

initially or as a result of satisfying the conformity requirement) is always divided into two

by bisecting it by the longest edge. In the second algorithm, the triangle is first bisected

by the longest edge into two and if the non-conformity still persists, one or both of the two

refined triangles are further subdivided to maintain conformity.

C

A E D B

(a)

C

A D B

(b)

FIG. 2. Illustration of Rivara's two algorithms to refine by longest edge bisection

Rivara's second algorithm is simpler and more practical. It also has the same angle

bound as the first one. Therefore, it is the choice of several implementations including that

of Jones and Plassman. In this paper, the parallelization technique we present in the next

section applies to this second algorithm. Given a triangle with one, two, or all of the edges

marked for refinement, Figure 3 shows the four possible templates that are used to refine

the triangle in the second algorithm.

3 Algorithm Description

Unlike the previous algorithms which apply the refinement templates and propagate

refinement simultaneously, our approach first propagates the edge-markings to satisfy

conformity and then applies the templates at the end. Application of the templates can be

parallelized easily once appropriate edges have been marked for refinement. The issue that

remains is how to parallelize the propagation step in an efficient way.

The following theorem constructs the directed data dependency graph of refinement

propagation by treating each mesh edge as a vertex and drawing a directed edge from one



FIG.3. Rivara refinement templates

vertex to the other if the refinement of the former induces the refinement of the latter.

The theorem proves an important property of the graph constructed in this way.

THEOREM 3.1. Let Gr(Vr, Er) be a directed graph constructed from a triangular mesh

T(V, E, F) with the vertex set,

Vr = {ei : ei E E and ei is the longest edge of at least one triangle in F} ,

and the directed edge set,

E_ = {< vi,vj > : vi,vj E Vr and length(vi) < length(vj)} ;

then the graph Gr forms a forest of directed trees.

Proof. There are two observations. The lengths of mesh edges increase strictly as we

follow a directed path. Therefore, there can be no cyles in Gr and hence Gr forms a directed

acyclic graph (DAG). Secondly, a vertex vi E Vr can have at most one outward directed

edge. The only way a vertex could have more than one outward directed edge is if it was not

the longest edge of any triangle ; but these types of edges are not included in the definition

of Vr. Therefore, we have a DAG, with vertices having at most one outward edge. This

type of graph forms a forest of directed trees. 0

Our algorithm which parallelizes the refinement process basically constructs Euler Tours

of directed trees and does a computation similar to computing the number of descendants

of a tree node by the pointer jumping technique [6, p. 118]. We assign a weight of 1 to

each edge < v,parent(v) >, v E Vr, in the Euler Tour if node v has been initially marked

for refinement. All the other edges in the Euler Tour get a weight of 0. We compute prefix

sums of these weights. Treating the root of the tree as a special case, we take the difference

between the prefix sums of < parent(v),v > and < v,parent(v) > to get the number of

marked descendants. If a node has positive number of marked descendants or the node itself

has been initially marked for refinement, that node (i.e. the corresponding mesh edge) will
be refined.

If the number of triangles is n, then the numbers of edges and nodes are also O(n). Let

us assume a concurrent read, exclusive read model of PRAM. We will use O(n) number of

processors. The following theorem establishes the complexity of the algorithm assuming
this model.



Algorithm ParallelRef ine

begin

1. Construct forest of directed trees, Gr.

.

end

2. Construct Euler Tour of each tree in Gr.

3. Assign weights to each edge of Gr.

4. Perform prefix summation of the weights on the edges from the beginning of each

linked list by pointer jumping.

5. Compute the number of marked descendants of each node.

6. Refine an edge corresponding to a tree node if it is initially marked or it

has positive number of marked descendants.

Apply the appropriate refinement template to each triangle.

FIG. 4. Steps of parallel refinement algorithm

THEOREM 3.2. Algorithm ParallelRefine has logarithmic worst case complexity.

Proof. Step 1 of the algorithm takes O(1) time since it involves assigning a processor

to each triangle and having it compare the lengths of its edges. The degree of each node

in graph G_ is at most 4. Therefore, step 2 can be done in O(1) as follows: The directed

edges in the graph G_ act as backward edges, < v.parent(v) >, in the Euler Tour. The

backward edges and the forward edges, < parent(v), v >, can be assigned to one of the

four locations associated with a node using exclusive writes. To do this, note that we can

order the vertices of each triangle in such a way that we have a consistent (for example,

clockwise) traversal. If we let (xl, Yl), (x2, Y2) and (x3, Y3) denote the vertices of a triangle,

the ordering can be done by arranging vertices in triangles such that the determinant

formula, (x2y3 - x3y2) - (xly3 - x3yl) + (xly2 - x2yl) has a consistent sign. Given an edge

ei = (Uio, uil ), we can have at most two triangles sharing this edge. From the consistent
ordering, we can then state that the difference in the indices, will be positive for one triangle

(e.g. i0 -il > 0) and negative for the other triangle (e.g. il -i0 < 0). Furthermore, we can

classify edges within a single triangle according to the order they appear (taking the longest

edge as a frame of reference). In this way, we can get a unique location in the range 0,..., 3

for each edge and hence make the assignment by exclusive writes. Weight assignment in

step 3 takes O(1). The prefix summation by pointer jumping at step 4 takes O(log n) time.

Step 5 takes O(1) time to compute the differences in prefix summation. Finally steps 6 and

7 take O(1) time since it involves each processor assigned to a triangle check locally for the

appropriate template to use and to apply the refinement using this template. The overall

parallel refinement algorithm has logarithmic worst case complexity. U

The next section gives an example mesh and shows examples of linearized tree

constructions on this mesh.

4 Example and Tree Representations

We illustrate the steps of our parallel refinement algorithm on the example mesh given in

Figure 4. Figure 4(a) shows the original mesh with labels on the edges which act as the

longest edge of at least one triangle. It also shows the shaded face fl as being initially
marked for refinement. Since edge 3 is the longest edge of face ft. it has a weight of 1 and

is drawn with a dark circle to indicate this weight. The rest of the labelled edges are not



part of any facewhich have been marked for refinement. Therefore, they all have weight 0

and are drawn with a white circle to indicate this weight. Additionally, Figure 4(a) shows

the forest of directed trees that represent the dependency of refinement propagation for the

mesh. As is illustrated in Figure 4(b), the refinement of edge 3 will propagate to edges 4,

5 and 6. Once these four edges are marked for refinement, application of tile refinement

templates given in Figure 2 will lead to the final refined and conforming mesh given in

Figure 4(c).

ft

7 fll

(a) (b) (c)

FIG. 5. An example showing the construction of directed trees (a), the propagation of refinement

(b) and the final refined mesh (c)

Given the example mesh and the corresponding forest of directed trees, we illustrate the

Euler-Tour representation of one of the trees (the one containing the nodes 3, 4, 5 and 6)

in Figure 6(a). Euler Tour representation replaces each edge of the tree with two directed

edges. In distributed memory implementations, this may lead to some complications due

to variable number of links pointing to or from a tree node. A more practical preorder

tree traversal representation involve replacement of each tree node, u E Vr, with two nodes,

u0 and ul. This representation has been used by [15] and recently by [8]. Figure 6(b)

illustrates the example tree in this representation.

E
(a) (b)

FIG. 6. Linearized representation for one of the trees in the example: Euler Tour representation

(a) and another more practical representation (b)

Given the representation in Figure 6(b), we assign the following weights; w(uo) = 1 if



u has been marked for refinement and w(u0) = 0 if u has been not marked for refinement.

In addition, we assign w(ui) = 0. Let pw(ui), i = 0, I, denote the prefix-type computation

defined on this linked list, i.e. tile summation of weights of nodes from the beginning of

the list until and including the node ui.

TABLE 1

nodeui ]l 6o 7o 71 5o 40 3o 31 41 51 80 81 61

w(ui) 0 0 0 0 0 1 0 0 0 0 0 0

pw(ui) 1 1 1 1 1 1 0 0 0 0 0 0

pw(uo) -pw(ul) 1 0 1 1 1 0

Table 1 shows the initial weight assignments and the values of pw(ui). If pw(u0) -

pw(ul) > 0, then we know that the node u has been either initially marked for refinement

or it should be marked because of propagation of refinement.

5 Discussion and Conclusion

In this paper, we have presented a logarithmic algorithm for adaptive mesh refinement

by the longest edge bisection. The main advantage of the proposed algorithm is not its

significantly lower worst case complexity, but rather its simplicity and its data parallel

nature. The algorithm uses parallel prefix-type computation on linked list of mesh entities.

Hence, it is a good candidate for implementation by a data parallel language like High

Performance Fortran. The previous methods which have been proposed will be difficult to

implement with a data parallel language.

We have assumed our input to be in the form of faces pointing to edges and edges

pointing to vertices. Whereas mesh generators such as the one described in [13] generate

this type of input by default, there are also mesh generators that output meshes by giving

a set of vertices and a set of faces with each face pointing to three vertices. One possible

conversion procedure for this type input is this: We can identify edges with the indices of

its two vertices which make it up. We can then have each face generate these two-tuples

(vertex-vertex pair in ascending order) for each of its edges. These two tuples can then be

sorted to get the face-to-edge relationship.

In this paper, we have developed our algorithm for two-dimensional triangular meshes.

One immediate question that pops up is this: Can we employ the same strategy for adaptive

refinement of three-dimensional tetrahedral meshes ? Various methods have been proposed

for tetrahedron refinement [3][9] including one based on longest edge bisection [12]. In two

dimensions, an edge can be shared by at most two faces. In three dimensions, there can be

arbitrary number of faces which can share an edge. This introduces some complications.

These problems will be the target of future investigations.

References

[1] I. Babuska and K. Aziz, On the angle condition in the finite element method, SIAM J. Numer.
Analysis, 13 (1976), pp. 214-226.

[2] R. Bank, A. Sherman, and H. Weiser, Refinement algorithms and data structures for
regular local mesh refinement, in Scientific Computing, R. S. et al.. ed., Amsterdam, 1983,
IMACS/North Holland Publishing Company, pp. 3-17.



[3] E. Bansch, An adaptive finite-element strategy for the three-dimensional time-dependent navier-
stokes equations, .J. of Computational and Applied Mathematics, 36 (1991). pp. 3-28.

[4] J. G. Castanos, The dynamic adaptation of parallel mesh-based computation, Master's thesis,
Department of Computer Science Department, Brown University, May 1996.

[5] I. Fried, Condition of finite element matrices generated from non-uniform meshes, AIAA J.,
10 (1972), pp. 219-221.

[6] .J. Jaja, An introduction to Parallel Algorithms, Addison Wesley, 1992.

[7] M. T. Jones and P. E. Plassmann, Parallel algorithms for adaptive mesh refinement, Tech. Rep.
MCS-P421-0494, Mathematics and Computer Science Division, Argonne National Laboratory,
Illinois, 1994. (to appear in SIAM J. on Scientific Computing).

[8] C. P. Kruskal, L. Rudolph, and M. Snir, Efficient parallel algorithms for graph problems,

Algorithmica, 5 (1990), pp. 43-64.

[9] A. Liu and B. Joe, Quality local refinement of tetrahedral meshes based on bisection, SIAM J.
on Scientific Computing, 16 (1995), pp. 1269-1291.

[10] M.-C. Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid
techniques, Int. J. Numer. Methods in Engineering, 20 (1984), pp. 745-756.

[11] _, Mesh refinement processes based on the generalized bisection of simplices, SIAM J.
Numer. Analysis, 21 (1984), pp. 604-613.

[12] M.-C. Rivara and C. Levin, 3d refinement algorithm suitable for adaptive multigrid techniques,
Comm. in Applied Numer. Methods, 8 (1992), pp. 281-290.

[13] W. J. Schroeder and M. S. Shephard, A combined octree/Delaunay method for fully automatic
3d mesh generation, Int. J. of Numer. Methods in En_neering, 29 (1990), pp. 37-55.

[14] M. S. Shephard, J. E. Flaherty, H. L. DeCougny, C. Ozturan, C. L. Bottasso, and M. Beall,
Parallel automated adaptive procedures for unstructured meshes, in Parallel Computing in CFD,

AGARD, Neuilly-Sur-Seine, 1995.

[15] B. K. Szymanski and A. Minczuk, A representation of a distribution power network graph,
Archiwum Elektrotechniki, 27 (1978), pp. 367-380.

[16] R. D. Williams, A dynamic solution-adaptive unstructured parallel solver, Tech. Rep. CCSF-
21-92, Supercomputing Facility, California Institute of Technology, California, 1992.





9



Form Apl_'oved

REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Public repotting I_ufdefl for this collection of informatlon.is estlmated to avera&e I hour per response: including the time for revlewingjinsiructk)nS: searching existing data source,_.
&atherinl| and mamtainin_ the data needed, and completmlt and revR*wmg the ¢o lectton of mfocmatlon. S¢md _c_o_.n.ments rt_ardmg thts burden est mate or any other aspect of thts
collection of information, mcludin& sui_estions for reducmg thts burden, to W_hm&ton Headquarters Serwces. Directorate for Inf_matton Operattons and Reports. 1215 Jefferson
Davis Highway. Suite 1204. Arlin&ton. VA 22202-4302. and to the Office of Management and Budget. Palx,vwork Reductton Project (0704-0188). Washmgton. OC 20503.

1. AGENCY USE ONLY(Leave blank) I 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I December 1996 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

WORST CASE COMPLEXITY OF PARALLEL TRIANGULAR

MESH REFINEMENT BY LONGEST EDGE BISECTION

6. AUTHOR(S)

Can C)zturan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 96-56

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-201604

ICASE Report No. 96-56

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

To appear in the Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific Computing.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 60, 61

13. ABSTRACT (Maximum 200 w_ds)

We present a logarithmic algorithm for performing parallel refinement of triangular meshes by the widely used longest
edge bisection procedure. We show that the refinement propagation forms a data dependency which can be expressed
as a forest of directed trees. We solve a parallel Euler Tour problem on the trees to propagate the refinement. After

propagation, we apply refinement templates. Our algorithm improves earlier reported results which had linear worst

case complexity.

14. SUBJECT TERMS

parallel processing; adaptive mesh refinement

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATIOh

OF REPORT OF THIS PAGE

Unclassified Unclassified

_ISN 7540-01-280-5500

10

19. SECURITY CLASSIFICATIOI_

OF ABSTRACT

15. NUMBER OF PAGES

9

16. PRICE CODE

AQ3
20. LIMITATION

OF ABSTRACT

Standard Form 29B(Rev. 2o8g)
Prescribed by ANSI Std. Z39-18
298-102


